Forum Renkli - Türkiye`nin En Renkli Eğlence ve Bilgi Paylaşım Platformu  



"Taklitler, Asıllarını yaşatırmış."
Go Back   Forum Renkli - Türkiye`nin En Renkli Eğlence ve Bilgi Paylaşım Platformu > Eğitim & Öğretim > Eğitim ve Öğretim Genel > Felsefe ve Sosyoloji
Ücretsiz Kayıt ol veya Üye Girişi yapın.
Felsefe ve Sosyoloji Felsefe ve Sosyoloji dersi hakkındaki tüm bilgiler ve paylaşımlar bu bölümdedir.

Forum Renkli - Türkiye'nin En Renkli Eğlence ve Paylaşım Platformuna Hoşgeldiniz.
Forum Renkli'ye Hoşgeldiniz. Forumumuza ücretsiz KAYIT olarak, forumumuzda bilgi alışverişi yapabilir ve aramıza katılıp samimi dostluklar kurabilirsiniz.

Forumumuzda bizimle birlikte paylaşıma katılmak için buradan üye olabilirsiniz.



veya Facebook üyeliğiniz ile sitemize kayıt olabilirsiniz.
Etiketli Üyeler Listesi

Yeni Konu Aç Cevap Yaz
 
LinkBack Seçenekler Stil
Alt 17 Eylül 2012, 22:55   #1 (permalink)
Emekli Yönetici

Şafak - ait Kullanıcı Resmi (Avatar)
Üyelik tarihi: 18 Ağustos 2011
Nerden: Eskişehir
Yaş: 27
(Mesajlar): 17.906
(Konular): 12982
İlişki Durumu: Yok
Burç:
Renkli Para : 967442
Aldığı Beğeni: 1672
Beğendikleri: 1673
Ruh Halim: Ruhsuz
ÖdülleriÜye Ödülleri: 6
Oscar Ödülü Oscar Ödülü Oscar Ödülü Oscar Ödülü Oscar Ödülü Teşekkür Plaketi 
Standart Euclides:

EUCLIDES:
(M.Ö. 325 - M.Ö. 265)

Rönesans sonrası Avrupa'da, Kopernik'le başlayan, Kepler, Galileo ve Newton'la 17. yüzyılda doruğuna ulaşan bilimsel devrim, kökleri Helenistik döneme uzanan bir olaydır. O dönemin seçkin bilginlerinden Aristarkus, güneş-merkezli astronomi düşüncesinde Kopernik'i öncelemişti; Arşimet yaklaşık iki bin yıl sonra gelen Galileo'ya esin kaynağı olmuştu; Öklid çağlar boyu yalnız matematik dünyasının değil, matematikle yakından ilgilenen hemen herkesin gözünde özenilen, yetkin bir örnekti. Öklid, M.Ö. 300 sıralarında yazdığı 13 ciltlik yapıtıyla ünlüdür. Bu yapıt, geometriyi (dolayısıyla matematiği) ispat bağlamında aksiyomatik bir dizge olarak işleyen, ilk kapsamlı çalışmadır. 19. yüzyıl sonlarına gelinceye kadar alanında tek ders kitabı olarak akademik çevrelerde okunan, okutulan Elementler'in, kimi yetersizliklerine karşın, değerini bugün de sürdürdüğü söylenebilir.

Egeli matematikçi Öklid'in kişisel yaşamı, aile çevresi, matematik dışı uğraş veya meraklarına ilişkin hemen hiçbir şey bilinmemektedir. Bilinen tek şey; İskenderiye Kraliyet Enstitüsü'nde dönemin en saygın öğretmeni; alanında yüzyıllar boyu eşsiz kalan bir ders kitabının yazarı olmasıdır. Eğitimini Atina'da Platon'un ünlü akademisinde tamamladığı sanılmaktadır. O akademi ki giriş kapısında, ''Geometriyi bilmeyen hiç kimse bu kapıdan içeri alınmaz!'' levhası asılıydı.

Öklid'in bilimsel kişiliği, unutulmayan iki sözünde yansımaktadır: Dönemin kralı I. Ptolemy, okumada güçlük çektiği Elementler'in yazarına, "Geometriyi kestirmeden öğrenmenin yolu yok mu?'' diye sorduğunda, Öklid "Özür dilerim, ama geometriye giden bir kral yolu yoktur'' der. Bir gün dersini bitirdiğinde öğrencilerinden biri yaklaşır, ''Hocam, verdiğiniz ispatlar çok güzel; ama pratikte bunlar neye yarar?'' diye sorduğunda, Öklid kapıda bekleyen kölesini çağırır, "Bu delikanlıya 5-10 kuruş ver, vaktinin boşa gitmediğini görsün!'' demekle yetinir.

Öklid haklı olarak "geometrinin babası" diye bilinir; ama geometri onunla başlamış değildir. Tarihçi Herodotus (M.Ö. 500) geometrinin başlangıcını, Nil vadisinde yıllık su taşmalarından sonra arazi sınırlarını belirlemekle görevli kadastrocuların çalışmalarında bulmuştu. Geometri "yer" ve "ölçme" anlamına gelen "geo" ve "metrein" sözcüklerinden oluşan bir terimdir. Mısır'ın yanı sıra Babil, Hint ve Çin gibi eski uygarlıklarda da gelişen geometri o dönemlerde büyük ölçüde, el yordamı, ölçme, analoji ve sezgiye dayanan bir yığın işlem ve bulgudan ibaret çalışmalardı. Üstelik ortaya konan bilgiler çoğunlukla kesin olmaktan uzak, tahmin çerçevesinde kalan sonuçlardı. Örneğin, Babilliler dairenin çemberini çapının üç katı olarak biliyorlardı. Bu öylesine yerleşik bir bilgiydi ki; pi' nin değerinin 3 değil, 22/7 olarak ileri sürenlere, bir tür şarlatan gözüyle bakılıyordu. Mısırlılar bu konuda daha duyarlıydılar: M.Ö. I800 yıllarına ait Rhind papürüslerinde onların pi'yi yaklaşık 3.1604 olarak belirledikleri görülmektedir; ama Mısırlıların bile her zaman doğru sonuçlar ortaya koyduğu söylenemez. Nitekim, kesik kare piramidin oylumunu (hacmini) hesaplamada doğru formülü bulan Mısırlılar, dikdörtgen için doğru olan bir alan formülünün, tüm dörtgenler için geçerli olduğunu sanıyorlardı.

Aritmetik ve cebir alanında Babilliler , Mısırlılardan daha ilerde idiler. Geometride de önemli buluşları vardı. Örneğin, "Pythagoras Teoremi" dediğimiz, bir dik açılı üçgende dik kenarlarla hipotenüs arasındaki bağıntıya ilişkin önerme "bir dik üçgenin dik kenar karelerinin toplamı, hipotenüsün karesine eşittir" buluşlarından biriydi. Ne var ki, doğru da olsa bu bilgiler ampirik nitelikteydi; mantıksal ispat aşamasına geçilmemişti henüz. Ege' li Filazof Thales'in (M.Ö. 624-546), geometrik önermelerin dedüktif yöntemle ispatı gereğini ısrarla vurguladığı, bu yolda ilk adımları attığı bilinmektedir . Mısır gezisinde tanıştığı geometriyi, dağınıklıktan kurtarıp, tutarlı, sağlam bir temele oturtmak istiyordu. İspatladığı önermeler arasında . ikizkenar üçgenlerde taban açılarının eşitliği; kesişen iki doğrunun oluşturduğu karşıt açıların birbirine eşitliği vb. ilişkiler vardı. Klasik çağın "Yedi Bilgesi" nden biri olan Thales'in açtığı bu yolda, Pythagoras ve onu izleyenlerin elinde, matematik büyük ilerlemeler kaydetti, sonuçta Elementler'de işlenildiği gibi, oldukça soyut mantıksal bir dizgeye ulaştı. Pythagoras, matematikçiliğinin yanı sıra, sayı mistisizmini içeren gizliliğe bağlı bir tarikatın önderiydi. Buna göre; sayısallık evrensel uyum ve düzenin asal niteliğiydi; ruhun yücelip tanrısal kata erişmesi ancak müzik ve matematikle olasıydı.

Buluş ve ispatlarıyla matematiğe önemli katkılar yapan Pythagorasçılar, sonunda inançlarıyla ters düşen bir buluşla açmaza düştüler. Bu buluş, karenin kenarı ile köşegenin ölçüştürülemeyeceğine ilişkindi. kök 2 gibi, bayağı kesir şeklinde yazılamayan sayılar , onların gözünde gizli tutulması gereken bir skandaldı. Rasyonel olmayan sayılarla temsile elveren büyüklükler nasıl olabilirdi? (Pythagorasçıların tüm çabalarına karşın üstesinden gelemedikleri bu sıkıntıyı, daha sonra tanınmış bilgin Eudoxus oluşturduğu, irrasyonel büyüklükler için de geçerli olan, Orantılar Kuramı'yla giderir).

Öklid, Pythagoras geleneğine bağlı bir ortamda yetişmişti. Platon gibi, onun için de önemli olan soyut düşünceler , düşünceler arasındaki mantıksal bağıntılardı. Duyumlarımızla içine düştüğümüz yanlışlıklardan, ancak matematiğin sağladığı evrensel ilkeler ve salt ussal yöntemlerle kurtulabilirdik. Kaleme aldığı Elementler, kendisini önceleyen Thales, Pythagoras, Eudoxus gibi, bilgin-matematikçilerin çalışmaları üstüne kurulmuştu. Geometri bir önermeler koleksiyonu olmaktan çıkmış, sıkı mantıksal çıkarım ve bağıntılara dayanan bir dizgeye dönüşmüştü. Artık önermelerin doğruluk değeri, gözlem veya ölçme verileriyle değil, ussal ölçütlerle denetlenmekteydi. Bu yaklaşımda pratik kaygılar ve uygulamalar arka plana itilmişti.

Kuşkusuz bu, Öklid geometrisinin pratik problem çözümüne elvermediği demek değildi. Tam tersine, değişik mühendislik alanlarında pek çok problemin, bu geometrinin yöntemiyle çözümlendiği; ama Elementler'in, eğreti olarak değindiği bazı örnekler dışında, uygulamalara yer vermediği de bilinmektedir. Öklid'in pratik kaygılardan uzak olan bu tutumunun matematik dünyasındaki izleri, bugün de rastladığımız bir geleneğe dönüşmüştür.

Gerçekten, özellikle seçkin matematikçilerin gözünde, matematik şu ya da bu işe yaradığı için değil, yalın gerçeğe yönelik, sanat gibi güzelliği ve değeri kendi içinde Soyut bir düşün uğraşı olduğu için önemlidir.

Matematiğin tümüyle ussal bir etkinlik olduğu doğru değildir. Buluş bağlamında tüm diğer bilimler gibi matematik de, sınama-yanılma, tahmin, sezgi, içedoğuş türünden öğeler içermektedir. Yeni bir bağıntıyı sezinleme, değişik bir kavram veya yöntemi ortaya koyma, temelde mantıksal olmaktan çok psikolojik bir olaydır. Matematiğin ussallığı, doğrulama bağlamında belirgindir. Teoremlerin ispatı, büyük ölçüde kuralları belli, ussal bir işlemdir; ama şu sorulabilir: Öklid neden, geometrinin ölçme sonuçlarıyla doğrulanmış önermeleriyle yetinmemiş, bunları ispatlayarak, mantıksal bir dizgede toplama yoluna gitmiştir? Öklid'i bu girişiminde güdümleyen motiflerin ne olduğunu söylemeye olanak yoktur; ancak, Helenistik çağın düşün ortamı göz önüne alındığında, başlıca dört noktanın öngörüldüğü söylenebilir:

1) İşlenen konuda çoğu kez belirsiz kalan anlam ve ilişkilere açıklık getirmek;

2) İspatta başvurulan öncülleri (varsayım, aksiyom veya postulatları) ve çıkarım kurallarını belirtik kılmak;

3) Ulaşılan sonuçların doğruluğuna mantıksal geçerlik kazandırmak (Başka bir deyişle, teoremlerin öncüllere görecel zorunluluğunu, yani öncülleri doğru kabul ettiğimizde teoremi yanlış sayamayacağımızı göstermek);

4) Geometriyi, ampirik genellemeler düzeyini aşan soyut-simgesel bir dizge düzeyine çıkarmak (Bir örnekle açıklayalım: Mısırlılar ile Babilliler kenarları 3, 4, 5 birim uzunluğunda olan bir üçgenin, dik üçgen olduğunu deneysel olarak biliyorlardı; ama bu ilişkinin 3, 4, 5 uzunluklarına özgü olmadığını, başka uzunluklar için de geçerli olabileceğini gösteren veriler ortaya çıkıncaya dek kestirmeleri güçtü; buna ihtiyaçları da yoktu. Öyle kuramsal bir açılma için pratik kaygılar ötesinde, salt entellektüel motifli bir arayış içinde olmak gerekir. Nitekim, Egeli bilginler somut örnekler üzerinde ölçmeye dayanan belirlemeler yerine, bilinen ve bilinmeyen tüm örnekler için geçerli soyut genellemeler arayışındaydılar. Onlar, kenar uzunlukları, a, b, c diye belirlenen üçgeni ele almakta, üçgenin ancak a2+b2=c2 eşitliği gerçekleştiğinde dik üçgen
olabileceği genellemesine gitmektedirler).

Öklid, oluşturduğu dizgede birtakım tanımların yanı sıra, beşi "aksiyom" dediği genel ilkeden, beşi de "postulat" dediği geometriye özgü ilkeden oluşan, on öncüle yer vermiştir (Öncüller, teoremlerin tersine ispatlanmaksızın doğru sayılan önermelerdir). Dizge tüm yetkin görünümüne karşın, aslında çeşitli yönlerden birtakım yetersizlikler içermekteydi. Bir kez verilen tanımların bir bölümü (özellikle, "nokta'', "doğru", vb. ilkel terimlere ilişkin tanımlar) gereksizdi. Sonra daha önemlisi, belirlenen öncüller dışında bazı varsayımların, belki de farkında olmaksızın kullanılmış olması, dizgenin tutarlılığı açısından önemli bir kusurdu. Ne var ki, matematiksel yöntemin oluşma içinde olduğu başlangıç döneminde, bir bakıma kaçınılmaz olan bu tür yetersizlikler, giderilemeyecek şeyler değildi. Nitekim, l8. yüzyılda başlayan eleştirel çalışmaların dizgeye daha açık ve tutarlı bir bütünlük sağladığı söylenebilir. Üstelik dizgenin irdelenmesi, beklenmedik bir gelişmeye de yol açmıştır: Öncüllerde bazı değişikliklerle yeni geometrilerin ortaya konması. "Öklid-dışı" diye bilinen bu geometriler, sağduyumuza aykırı da düşseler, kendi içinde tutarlı birer dizgedir. Öklid geometrisi, artık var olan tek geometri değildir. Öyle de olsa, Öklid'in düşünce tarihinde tuttuğu yerin değiştiği söylenemez.

Çağımızın seçkin filozofu Bertrand Russell'ın şu sözlerinde Öklid'in özlü bir değerlendirmesini bulmaktayız: '"Elementler'e bugüne değin yazılmış en büyük kitap gözüyle bakılsa yeridir. Bu kitap gerçekten Grek zekasının en yetkin anıtlarından biridir. Kitabın Greklere özgü kimi yetersizlikleri yok değildir, kuşkusuz: dayandığı yöntem salt dedüktif niteliktedir; üstelik, öncüllerini oluşturan varsayımları yoklama olanağı yoktur. Bunlar kuşku götürmez apaçık doğrular olarak konmuştur. Oysa, 19.yüzyılda ortaya çıkan Öklid-dışı geometriler, bunların hiç değilse bir bölümünün yanlış olabileceğini, bunun da ancak gözleme başvurularak belirlenebileceğini göstermiştir."

Gene Genel Rölativite Kuramı'nda Öklid geometrisini değil, Riemann geometrisini kullanan Einstein'ın, Elementler'e ilişkin yargısı son derece çarpıcıdır: "Gençliğinde bu kitabın büyüsüne kapılmamış bir kimse, kuramsal bilimde önemli bir atılım yapabileceği hayaline boşuna kapılmasın!"




Şafak isimli Üye şimdilik offline konumundadır   Alıntı
Yeni Konu Aç Cevap Yaz

Etiketler
euclides


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Forum Renkli Sosyal Medya
Forumrenkli Facebook Forumrenkli Twitter Forumrenkli RSS
Forum Renkli Desteklediklerimiz

Forum Renkli Yasal Uyarı!

Forum Renkli Türkiye'nin en renkli eğlence ve bilgi paylaşım platformudur. Hukuka, yasalara, telif ve kişilik haklarına bağlıdır. "5651 sayılı yasada" belirtilen "Yer Sağlayıcı" olarak hizmet sunmaktadır. İlgili yasaya göre site yönetiminin tüm içerikleri kontrol etme yükümlülüğü yoktur. Bu sebep ile sitemiz, uyarıları dikkate alarak yasa dışı paylaşımlar hakkında gerekli işlemleri yapmaktadır. Oluşabilecek yasal sorumluluklar "Üyelerimize" aittir.

Forum Renkli; Arkadaşlık, Dostluk, Eğlence, Paylaşım, Msn Nickleri, Msn Sözleri, Msn Avatarları, Ödüllü Yarışmalar, Msn Sözleri, Şiirler, Şarkılar, Moda, Sağlık, Tv, Dizi, Film, Komik, Komik Resimler, Komik Videolar, Haberler, Spor Haberleri ve Güncel Bilgi Paylaşımı gibi konuların kullanıcıları tarafından önceden onay almadan anında yayınlayabildikleri bir forumdur.

Copyright© 2011 - 2013, ForumRenkli.com® Tüm Hakları Saklıdır.


Forum Renkli Alexa Forum Renkli Sitemap



vBulletin® Version 3.8.7 ile güçlendirilmiştir.
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd
Inactive Reminders By Realdizayn

Search Engine Optimization by vBSEO 3.6.1 ©2011, Crawlability, Inc.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557