Forum Renkli - Türkiye`nin En Renkli Eğlence ve Bilgi Paylaşım Platformu  



"Taklitler, Asıllarını yaşatırmış."
Go Back   Forum Renkli - Türkiye`nin En Renkli Eğlence ve Bilgi Paylaşım Platformu > Eğitim & Öğretim > Eğitim ve Öğretim Genel > Matematik
Ücretsiz Kayıt ol veya Üye Girişi yapın.
Matematik Matematik dersi hakkındaki tüm bilgiler ve paylaşımlar bu bölümdedir.

Forum Renkli - Türkiye'nin En Renkli Eğlence ve Paylaşım Platformuna Hoşgeldiniz.
Forum Renkli'ye Hoşgeldiniz. Forumumuza ücretsiz KAYIT olarak, forumumuzda bilgi alışverişi yapabilir ve aramıza katılıp samimi dostluklar kurabilirsiniz.

Forumumuzda bizimle birlikte paylaşıma katılmak için buradan üye olabilirsiniz.



veya Facebook üyeliğiniz ile sitemize kayıt olabilirsiniz.
Etiketli Üyeler Listesi

Yeni Konu Aç Cevap Yaz
 
LinkBack Seçenekler Stil
Alt 22 Ekim 2011, 12:27   #1 (permalink)
| DJ |

-life4kill- - ait Kullanıcı Resmi (Avatar)
Üyelik tarihi: 17 Ağustos 2011
(Mesajlar): 4.047
(Konular): 1295
Renkli Para : 5941
Aldığı Beğeni: 5
Beğendikleri: 1
Ruh Halim: none
Takım :
Standart Asal Sayılar

Asal sayılar, 1 ve kendisinden başka pozitif tam böleni olmayan 1' den büyük tamsayılardır. En küçük asal sayı, 2' dir. 2 asal sayısı dışında çift asal sayı yoktur. Yani, 2 sayısı dışındaki tüm asal sayılar tek sayıdır. Asal sayılar kümesi,
{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, ... }
dir.
Fermat Teoremi' ne göre, n asal sayı olmak üzere, 2n - 1 şeklinde yazılabilen sayılar asal sayıdır. Örneğin,
22 - 1, 23 - 1, 25 - 1, 27 - 1, 211 - 1, ...
sayıları, asal sayıdır.
Aralarında asal sayılar:

1' den başka pozitif ortak böleni olmayan sayılara, aralarında asal sayılar adı verilir. Birden fazla sayının aralarında asal olması için, bu sayıların asal sayı olması gerekmez. Asal sayılar, kesinlikle aralarında asal sayılardır. Bununla birlikte, 10 ve 81 sayısı birer asal sayı olmamasına rağmen, aralarında asal sayılardır. Diğer taraftan, 10 ile 8 sayısı birer asal sayı olmamasına rağmen, 2 ortak bölenleri olduğu için, aralarında asal sayılar değildir. Bir sayı aralarında asal iki sayıya bölünebiliyorsa, bu iki sayının çarpımına da bölünür.

Örneğin,
• 2, 9
• 10, 81
• 5, 29
• 3, 8
• 2, 10, 35
sayı grupları, ortak tam bölenleri olmadığı için aralarında asal sayılardır.
Asal olmayan sayılara da bileşik sayı adı verilir. Dolayısıyla, bileşik sayıların 1 ve kendisinden başka bölenleri vardır. Örneğin, 10 sayısı bir bileşik sayıdır. Çünkü, 10 sayısının 1 ve kendisinden başka, 2 ile 5 böleni vardır. Buradan, asal olmayan 10 sayısı, birer asal sayı olan 2 sayısı ile 5 sayısının çarpımı olarak yazılabilir. 2 ile 5 sayısına, 10 sayısının asal çarpanı veya böleni denir. Yani, bileşik bir sayı, asal sayıların çarpımı şeklinde yazılabilir.

Örnek:

Aşağıdaki sayı gruplarından hangisi aralarında asaldır?
a) 4, 20 b) 6, 21 c) 27, 36, 39 d) 8, 24, 36 e) 3, 5, 25

Çözüm:

a) 4 ile 20' nin ortak böleni vardır ve bu da 2 ile 4' tür.
b) 6 ile 21' in ortak böleni vardır ve bu da 3' tür.
c) 27, 36 ve 39' un ortak böleni vardır ve ortak bölen 3' tür.
d) 8, 24 ve 36' nın ortak böleni vardır ve ortak bölen 2 ve 4' tür.
e) 3, 5 ve 25' in ortak böleni yoktur. Çünkü, bu üç sayıyı birden bölen 1' den başka sayı yoktur. Dolayısıyla, bu sayılar aralarında asaldır.

Örnek :

a, b ve c birbirinden farklı rakamlar olmak üzere, ab ile bc iki basamaklı aralarında asal sayılardır. Buna göre, ab + bc toplamının en küçük değeri kaçtır?

Çözüm:

Toplamın en küçük olması için, sayıları en küçük almalıyız. Buna göre, ab = 21 olurken. bc = 13 olmalıdır. Dolayısıyla,
ab + bc = 21 + 13 = 34
olur.



SAYILARIN ASAL ÇARPANLARINA AYRILMASI

Her bileşik sayı, asal sayıların veya asal sayıların kuvvetlerinin çarpımı şeklinde yazılabilir. Bu işlemi yapmak için, ilgili sayının sırasıyla en küçük asal sayıdan başlanarak bölünebilmesi araştırılır.


BİR SAYMA SAYISININ TAMSAYI BÖLENLERİ
Bir sayma sayısının pozitif tamsayı bölenlerinin sayısı:

Herhangi bir A sayma sayısının asal çarpanları a, b ve c olmak üzere,
A = am . bn . cp
şeklinde asal çarpanlarına ayrılmış ise, A sayma sayısının pozitif tamsayı bölenlerinin sayısı,
( m + 1 ) . ( n + 1 ) . ( p + 1 )
dir. Bu sayıya, 1 ile sayının kendisi dahil edilmiştir.

Bir sayma sayısının tüm tamsayı bölenlerinin sayısı:

Herhangi bir A sayma sayısının asal çarpanları a, b ve c olmak üzere,
A = am . bn . cp
şeklinde asal çarpanlarına ayrılmış ise, A sayma sayısının tüm tamsayı bölenlerinin sayısı,
2 . ( m + 1 ) . ( n + 1 ) . ( p + 1 )
dir. Yani, A sayma sayısının tüm tamsayı bölenlerinin sayısı, pozitif bölenlerinin sayısının 2 katıdır. Bu sayıya, 1 ile sayının kendisi dahil edilmiştir.

Bir sayma sayısının pozitif tamsayı bölenlerinin toplamı:

Herhangi bir A sayma sayısının asal çarpanları a, b ve c olmak üzere,
A = am . bn . cp

Bu toplama, 1 ile sayının kendisi dahil edilmiştir. Bir sayma sayısının tüm tamsayı bölenlerinin toplamı ise, sıfırdır.

Bir sayma sayısının pozitif tamsayı bölenlerinin çarpımı:

Herhangi bir A sayma sayısının asal çarpanları a, b ve c olmak üzere,

A = am . bn . cp

şeklinde asal çarpanlarına ayrılmış ise, A sayma sayısının pozitif tamsayı bölenlerinin çarpımı,üssün A’nın pozitif tamsayı bölenlerinin yarısı kadardır.


Örnek :

120 sayısının
a) Kaç tane pozitif böleni vardır?
b) Kaç tane tamsayı böleni vardır?
c) Pozitif bölenlerinin toplamı kaçtır?
d) Pozitif bölenlerinin çarpımı kaçtır?

Çözüm:
a) 120 sayısının asal çarpanlarına ayrılmış şekli
120 = 23 . 31. 51
olduğundan, pozitif bölenlerinin sayısı
( 3 + 1) . ( 1 + 1 ) . ( 1 + 1 ) = 4 . 2 . 2 = 16
dır.
b) 120 sayısının tüm bölenlerinin sayısı, pozitif bölenlerinin sayısının 2 katı olduğuna göre,
2 . 16 = 32
dir.
c) 120 sayısının pozitif bölenlerinin toplamı 360 olur.

d) 120 sayısının pozitif bölenlerinin çarpımı 8 dir.
120
Örnek :

500 . 5y sayısının asal olmayan 40 tane tamsayı böleni varsa, y kaçtır?

Çözüm:
500 . 5y = 22 . 53 . 5y
= 22 . 53 + y

2 tane asal böleni olduğundan, tüm bölenlerinin sayısı,

40 + 2 = 42

dir. Buradan, pozitif bölenlerinin sayısı, tüm bölenlerinin sayısının yarısı olduğundan,
21 = ( 2 + 1 ) . ( 3 + x + 1 )
21 = 3 . ( 4 + x )
21 = 12 + 3x
3x = 21 - 12
3x = 9
x = 3
olur.


OBEB (ORTAK BÖLENLERİN EN BÜYÜĞÜ)

OBEB, iki veya daha çok sayıyı aynı anda bölebilen en büyük sayıdır. Verilen sayıların OBEB' ini bulmak için, sayılar asal çarpanlarına ayrılır ve ortak asal çarpanların en küçük üsleri alınır.

1. Aralarında asal iki sayının OBEB' i 1' dir. Yani, a ile b aralarında asal iki sayı ise,
(a, b)OBEB = 1 dir.
2. Aynı zamanda, ikiden çok sayıdaki sayılardan en az iki tanesi aralarında asal ise, bu sayıların OBEB' i 1' dir. Yani, a, b, c, d, e sayılarından a ile b aralarında asal ise,
(a, b, c, d, e)OBEB = 1 dir.
3. İki veya daha fazla sayının ortak tam bölenlerinin sayısı, OBEB' inin bölenlerinin sayısına eşittir.
4. Ardışık iki sayma sayısının OBEB' i 1' dir. Yani, a ile b ardışık iki sayma sayısı olmak üzere,
(a , b)OKEK = 1 dir.


Örnek :
18, 30, 42 sayılarının OBEB' i kaçtır?

Çözüm:

18 = 2.32
30 = 2.3.5
42 = 2.3.7
Her üç sayının ortak asal çarpanlarının en küçük üslüsü alınmalıdır. Dolayısıyla,
(18, 30, 42)OBEB = 2.3 = 6 dır.

Örnek :

100 ile 120 sayılarının OBEB' i kaçtır?

Çözüm:


100 = 22.52
120 = 23.3.5
Her iki sayının ortak asal çarpanlarının en küçük üslüsü alınmalıdır. Dolayısıyla,
(100, 120)OBEB = 22.5 = 20 dir.

Örnek :
6, 15 ve 29 sayılarının OBEB' i kaçtır?

Çözüm:
İkiden çok sayıdaki sayıların en az iki tanesi aralarında asal ise, bu sayıların OBEB' i 1 olduğundan, verilen sayılardan 6 ile 29 sayısı veya 15 ile 29 sayısı aralarında asal olduğu için
(6, 15, 29)OBEB = 1
dir.

Örnek :

100 ile 120 sayılarının ortak tam bölenlerinin sayısı kaçtır?

Çözüm:
(100, 120)OBEB = 22.51 = 20
olduğundan, pozitif bölenlerinin sayısı,
( 2 + 1) . ( 1 + 1 ) = 3 . 2 = 6
bulunur. Buradan, tüm bölenlerin sayısı, pozitif bölenlerin sayısının iki katına eşit olduğundan,
2 . 6 = 12 olur.

Örnek :

Boyutları 9 cm, 12 cm, 15 cm olan dikdörtgenler prizması biçimindeki kutunun içerisi, boş yer kalmayacak şekilde en büyük boyutlu küplerle doldurulmak istenmektedir. Bu kutuya kaç tane küp yerleştirilebilir?

Çözüm:

Kutu en büyük boyutlu küplerle doldurulmak istendiğinden, 9 cm, 12 cm, 15 cm sayılarının OBEB' i bulunmalıdır. Bu nedenle,
(9, 12, 15)OBEB = 3 tür. Böylece, en büyük boyutlu küpün bir kenarı = 3 cm olur. Bir kenarı 3 cm olacak şekilde yerleştirilebilecek küp sayısı,
Küp sayısı = Kutunun hacmi / Küpün hacmi = 9.12.15/3.3.3 = 3.4.5 = 60
tane olur.

Örnek :

Boyutları 24 m ve 60 m olan dikdörtgen şeklindeki bir arsanın çevresine eşit aralıklarla en az sayıda kaç ağaç dikilebilir?

Çözüm:
İki ağacın arasındaki uzaklık, dikdörtgenin boyutlarının OBEB' i olur. Dolayısıyla,
(24, 60)OBEB = 12
Ağaç Sayısı = Çevre / 12 = 2 . (24 + 60) / 12 = 84 / 6 = 14
dir.

OKEK (ORTAK KATLARIN EN KÜÇÜĞÜ)

İki veya daha çok sayının her birine bölünen en küçük sayıdır. Verilen iki veya daha çok sayının OKEK' ini bulmak için, sayılar asal çarpanlarının kuvvetleri cinsinden yazılır ve ortak asal çarpanlarından üsleri en büyük olanlarla ortak olmayan asal çarpanlarının tümü alınarak çarpılır.

1. Aralarında asal sayıların OKEK' i, bu sayıların çarpımlarına eşittir. Yani, a ile b sayısı aralarında asal sayılar ise,
(a, b)OKEK = a . b dir.
2. a ve b iki doğal sayı olmak üzere, bu iki doğal sayının OBEB' i ile OKEK' inin çarpımı, bu iki doğal sayının çarpımına eşittir. Yani, a ve b doğal sayısı için
a . b = (a, b)OKEK . (a, b)OBEB dir.
3. a, b, c, d sayma sayıları olmak üzere,
(a/c,b/d)OKEK = (a, b)OKEK / (c, d)OBEB dir.
4. a ve b iki doğal sayı olmak üzere,
(a, b)OKEK = x ve (a, b)OBEB = y
ise, a ile b sayılarının toplamının en büyük değeri
x + y dir.
5. Ardışık iki sayma sayısının OKEK' i bu iki sayının çarpımına eşittir. Yani, a ile b ardışık iki sayma sayısı olmak üzere,
(a, b)OKEK = a . b dir.
6. a ile b sayma sayıları olmak üzere, a < b ise,
(a, b)OBEB <= a <= b <= (a, b)OKEK dir.

Örnek :

18 ile 45 sayılarının OKEK' ini bulunuz.

Çözüm:

18 = 2 . 32
45 = 32 . 5
olduğundan, (18, 45)OKEK = 32 . 2 . 5 = 90 olur.

Örnek :

a ve b doğal sayılarının OKEK' i 48 ve OBEB' i 8 ve bu sayılardan biri 16 ise, diğer sayı kaçtır?

Çözüm:
a = 16 olsun. (16, b)OKEK = 48 ve (16, b)OBEB = 8 olduğuna göre,
a . b = (a, b)OKEK . (a, b)OBEB
16 . b = 48 . 8
b = 24
bulunur.

Örnek :

Herhangi iki doğal sayının OKEK' i 120 ve OBEB' i 8 olduğuna göre, bu sayıların toplamı en çok kaç olabilir?

Çözüm:
İki doğal sayının toplamı en çok bu iki sayının OBEB' ile OKEK' inin toplamı kadar olabileceğinden,

120 + 8 = 128 dir.
Örnek :

Boyutları 2 cm, 4 cm, 6 cm olan dikdörtgenler prizması biçimindeki kutunun içerisi, boş yer kalmayacak şekilde en küçük boyutlu küplerle doldurulmak istenmektedir. Bu kutuya kaç tane küp yerleştirilebilir?

Çözüm:

Kutu en küçük boyutlu küplerle doldurulmak istendiğinden, 2 cm, 4 cm, 6 cm sayılarının OKEK' i bulunmalıdır. Bu nedenle,
(2, 4, 6)OKEK = 12 tür. Böylece, en küçük boyutlu küpün bir kenarı = 12 cm olur. Bir kenarı 12 cm olacak şekilde yerleştirilebilecek küp sayısı,
Küp sayısı = Kutunun hacmi / Küpün hacmi = 12.12.12/2.4.6 = 6.3.2 = 36
tane olur.

Örnek :

a, b, c asal sayılar olmak üzere,
x = a2 . b3 . c5 ve y = a5 . c2
ise, (x, y)OBEB = ? ve (x, y)OKEK = ? bulunuz.

Çözüm:
(x, y)OBEB = a2 . c2 = (a . c)2
(x, y)OKEK = a5 . b3 . c5 olur.

Örnek :

Ayşe toplarını 2' şer 2' şer, 4' er 4' er, 6' şar 6' şar sayarsa, her defasında 1 top artıyor. Ayşe' nin en az kaç topu vardır?

Çözüm:
Top sayısı = (2, 4, 6)OKEK + 1 = 12 + 1 = 13 tür.

Örnek :

2, 3, 4 sayılarına bölündüğünde 1 kalanını veren en büyük 2 basamaklı doğal sayı kaçtır?

Çözüm:
[(2, 3, 4)OKEK] . k + 1 <= 99
24 . k + 1 <= 99
k = 4 olur. Buradan, sayı
24 . 4 + 1 = 96 + 1 = 97
bulunur.

Örnek :
İki yangın sireni 5/7, 7/8 saat aralıklarla alarm vermektedirler. Bu iki yangın sireni aynı anda en son Cuma günü sabah 04.00' de alarm verdiklerine göre, hangi gün saat kaçta tekrar birlikte alarm verirler?


Çözüm:

Yangın sirenleri 5/7, 7/8 sayılarının OKEK' lerinde aynı anda alarm verirler. Dolayısıyla,
(5/7, 7/8)OKEK = (5, 7)OKEK / (7, 8)OBEB = 35 / 1 = 35 saat
sonra tekrar alarm verirler. O halde, Cumartesi günü saat 15.00' de tekrar alarm vereceklerdir.

Örnek :
Bir a doğal sayısı 5/3, 6 sayılarına bölündüğünde sonuç tamsayı olduğuna göre, bu koşula uyan en küçük a sayısı kaçtır?

Çözüm:
5/3 ile 6' nın OKEK' ini bulmalıyız. Bu takdirde,
(5/3, 6)OKEK = (5, 6)OKEK / (3, 1)OBEB = 30 / 1 = 30 olur.

Örnek :

OKEK' i 7 olan a ve b doğal sayılarının toplamlarının en küçük ve en büyük değerlerinin çarpımı kaç olur?

Çözüm:

(a, b)OKEK = 7 ve sayıların farklı olmadıkları söylenmediğine göre,
a = 7 ve b = 7
alınabilir. Bu durumda, a ile b' nin toplamının en büyük değeri
a + b = 7 + 7 = 14 ... (1)
olur. Diğer taraftan,
a = 1 ve b = 7 alınırsa, a ile b' nin toplamının en küçük değeri
a + b = 1 +7 = 8 ... (2)
olur. Buradan, (1) ile (2) nin çarpımı 14 . 8 = 112 bulunur




-life4kill- isimli Üye şimdilik offline konumundadır   Alıntı
Yeni Konu Aç Cevap Yaz

Etiketler
asal, sayılar


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Forum Renkli Sosyal Medya
Forumrenkli Facebook Forumrenkli Twitter Forumrenkli RSS
Forum Renkli Desteklediklerimiz

Forum Renkli Yasal Uyarı!

Forum Renkli Türkiye'nin en renkli eğlence ve bilgi paylaşım platformudur. Hukuka, yasalara, telif ve kişilik haklarına bağlıdır. "5651 sayılı yasada" belirtilen "Yer Sağlayıcı" olarak hizmet sunmaktadır. İlgili yasaya göre site yönetiminin tüm içerikleri kontrol etme yükümlülüğü yoktur. Bu sebep ile sitemiz, uyarıları dikkate alarak yasa dışı paylaşımlar hakkında gerekli işlemleri yapmaktadır. Oluşabilecek yasal sorumluluklar "Üyelerimize" aittir.

Forum Renkli; Arkadaşlık, Dostluk, Eğlence, Paylaşım, Msn Nickleri, Msn Sözleri, Msn Avatarları, Ödüllü Yarışmalar, Msn Sözleri, Şiirler, Şarkılar, Moda, Sağlık, Tv, Dizi, Film, Komik, Komik Resimler, Komik Videolar, Haberler, Spor Haberleri ve Güncel Bilgi Paylaşımı gibi konuların kullanıcıları tarafından önceden onay almadan anında yayınlayabildikleri bir forumdur.

Copyright© 2011 - 2013, ForumRenkli.com® Tüm Hakları Saklıdır.


Forum Renkli Alexa Forum Renkli Sitemap



vBulletin® Version 3.8.7 ile güçlendirilmiştir.
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd
Inactive Reminders By Realdizayn

Search Engine Optimization by vBSEO 3.6.1 ©2011, Crawlability, Inc.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557