Forum Renkli - Türkiye`nin En Renkli Eğlence ve Bilgi Paylaşım Platformu  



"Taklitler, Asıllarını yaşatırmış."
Go Back   Forum Renkli - Türkiye`nin En Renkli Eğlence ve Bilgi Paylaşım Platformu > Eğitim & Öğretim > Eğitim ve Öğretim Genel > Matematik
Ücretsiz Kayıt ol veya Üye Girişi yapın.
Matematik Matematik dersi hakkındaki tüm bilgiler ve paylaşımlar bu bölümdedir.

Forum Renkli - Türkiye'nin En Renkli Eğlence ve Paylaşım Platformuna Hoşgeldiniz.
Forum Renkli'ye Hoşgeldiniz. Forumumuza ücretsiz KAYIT olarak, forumumuzda bilgi alışverişi yapabilir ve aramıza katılıp samimi dostluklar kurabilirsiniz.

Forumumuzda bizimle birlikte paylaşıma katılmak için buradan üye olabilirsiniz.



veya Facebook üyeliğiniz ile sitemize kayıt olabilirsiniz.
Etiketli Üyeler Listesi

Yeni Konu Aç Cevap Yaz
 
LinkBack Seçenekler Stil
Alt 13 Nisan 2013, 17:20   #1 (permalink)
Üye

Cheyenne - ait Kullanıcı Resmi (Avatar)
Üyelik tarihi: 12 Nisan 2013
Nerden: Kayseri
Yaş: 25
(Mesajlar): 67
(Konular): 34
Renkli Para : 5010
Aldığı Beğeni: 9
Beğendikleri: 1
Ruh Halim: Geveze
Takım :
Standart Matematiğin Gizemi

p (pi) Sayısı:

Kısaca bir dairenin çevresinin çapına oranı, p sayısını verir. İnsanoğlu, aslında çok önemli vazifeleri olan bu sayı üzerinde çok düşünmüştür. Yıllarca tam olarak bir değer bulamamakla beraber, gerçek değerine en yakın sonuçları kullanabilmek için çaba sarfetmişlerdir.

p' nin kronolojik gelişimine baktığımızda günümüzde dahi tam bir sonuç bulunamamıştır. Çeşitli formüller üretilmesine rağmen sadece her seferinde gerçek değere biraz daha yaklaşılmıştır.

Arşimet 3.1/7 ile 3.10/71 arasında bir sayı olarak hesapladı. Mısırlılar 3.1605, Babilliler 3.1/8, Batlamyus 3.14166 olarak kullandı. İtalyan Lazzarini 3.1415929, Fibonacci ise 3.141818 ile işlem yapıyordu. 18.yyda 140, 19yyda 500 basamağa kadar hesaplandı. İlk bilgisayarlarla 2035 basamağı hesaplanırken günümüzde milyonlarca basamağa kadar çıkılıyor. İşin ilginç tarafı, hâlâ tam bir sonuç yok. Herhangi bir yerinde devir olsa iş yine kolaylaşacak. Ama henüz öyle bir şeye de rastlanmadı. Şu anda bilinen değerden birkaç basamak:

p=3,1415926535897932384626433832795028841971693993 7510582097494459230781640
62862089986280348253421170679821480865132823066470 9384460955058223172535940
81284811174502841027.....

İlginç Sayılar(1):

3² + 4² = 5²
10² + 11² + 12² = 13² + 14²
21² + 22² + 23² + 24² = 25² + 26² + 27²
36² + 37² + 38² + 39² + 40² = 41² + 42² + 43² + 44²

[COLOR="rgb(139, 0, 0)"]Fermat'ın Son Teoremi:[/COLOR]

Mesleği Avukatlık olan Fermat, arada bir matematikle de ilgilenirdi. Ama ne ilgilenmek. Aşağıdaki teorem, onun eseri. 1665 yılında 64 yaşında ölen Fermat'ın aşağıdaki teoremi, hâlâ ispatlanamadı. Bu problem üzerinde yıllarca çalışan ünlü alman matematikçi Wolfskehl, 1908 yılında öldüğünde, vasiyet olarak 100bin mark bıraktı. Hem de bu problemi yüzyıl içinde çözecek ilk kişiye verilmek üzere!

Teorem şöyle:

n>2 ve a, b ve c tamsayı olmak üzere

an + bn= cn çözümü olmadığını ispatlayın.

Fermat bu teoremi yazarken kullandığı kağıdın altında çok az yer kaldığı için cevabı yazamadığını, halbuki çok güzel bir ispatı olduğunu yazmıştır. (Belki Fermat ta cevabı bilmiyordu)

Bir hatırlatma: Eğer rastgele n=54179653 sayısını formüle uygulayıp eşitliği sağlamadığını göstermediyseniz, bu sayının hâlâ doğru olma şansı var demektir.

İlginç Sayılar(2):

Üç basamaklı herhangi bir sayıyı iki kere yanyana yazarak elde ettiğimiz yeni sayı, kesinlikle 7, 11, 13, 77, 91, 143, 1001 sayılarına kalansız olarak bölünür(neden?).

Örnek: 831831

831831 / 7 = 118833
831831 / 11 = 75621
831831 / 13 = 63987
831831 / 77 = 10803
831831 / 91 = 9141
831831 / 143 = 5817
831831 / 1001 = 831

İlginç Sayılar(3):

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321


Teorem:

Bütün kare sayılar, 1'den başlamak üzere sırasıyla tek tamsayıların toplamı olarak yazılabilir.

Örnekler:

5²=25
1 + 3 + 5 + 7 + 9 = 25

11² = 121
1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 = 121

Üçgen Sayılar:

1'den başlamak üzere kendisinden önceki tüm sayıların toplamına karşılık gelen sayıların dizisidir.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ... pozitif doğal sayılar ise, üçgen sayılar:

1, 3(1+2), 6(1+2+3), 10(1+2+3+4), 15(1+2+3+4+5),... üçgen sayılardır. Yani:

1, 3, 6, 10, 15, 21, 28, 36, 45, 55...

Pascal Üçgeni:

Pascal üçgeni, şekilde de görüldüğü gibi kenarlarda "1" olmak üzere her sayı, üstündeki iki sayının toplamı olarak yazılacak şekilde oluşturulur.

Pascal üçgeninin bazı özellikleri:

Kenarlar "1"den oluşur
ikinci(kırmızı) sıra, pozitif tamsayılar serisidir.
Üçüncü(mavi) sıra, üçgen sayılardır. (1, 3, 6, 10 15,...)
Aynı yöndeki sayıların(sarı) toplamı, seçtiğimiz son sayının ters yönündeki sayıya eşittir.
(Örnek: 1+2+3+4+5+6+7=28, 1+4+10+20+35=70 gibi)
Her sıradaki sayıların toplamı, 'sıfır'dan başlamak üzere "2"nin üslerini verir. 20, 21, 22, 23 ,24 ,...

(Örnek: 5. sıradaki sayıların toplamı, 1+4+6+4+1=16=24 )
Her sıra, yine 'sıfır'dan başlamak üzere kendi derecesinden bir polinomun katsayılarını verir.
( Örnek: (a+b)3=1a3+3ab2+3a2b+1b3)

Teorem:

Bütün sayılar 2'nin üsleri toplamı (tekrarsız) olarak yazılabilir.

Örnekler:

12 = 23 + 22
12 = 8 + 4

45 = 25 + 23 + 22 + 20
45 = 32 + 8 + 4 + 1

İlginç Sayılar(4):

12 x 42 = 21 x 24
23 x 96 = 32 x 69
24 x 84 = 42 x 48
13 x 62 = 31 x 26
46 x 96 = 64 x 69

Fibonacci Dizisi:

1'den başlamak üzere kendisinden önceki iki sayının toplamına karşılık gelen sayıların dizisidir.

1, 2, 3, 4, 5, 6, 7, 8, 9, ...ise, fibonacci dizisi:

1, 1(0+1), 2(1+1), 3(1+2), 5(2+3), 8(3+5), 13(5+8),... yani:

1, 2, 3, 5, 8, 13, 21, 34, 55...

Fibonacci dizisinin kullanıldığı pekçok yerden biri de "Şekil Paradoksları"ndaki üçgenli ve kareli sorulardır.

İlginç Sayılar(5):

3 x 37 = 111
6 x 37 = 222
9 x 37 = 333
12 x 37= 444
15 x 37 = 555
18 x 37 = 666
21 x 37 = 777
24 x 37 = 888
27 x 37 = 999


e Sayısı:

1 + (1/1!) + (1/2!) + (1/3!) + (1/4!) + ... + (1/n!) serisinin toplamı "e" sayısını verir. Yaklaşık değeri:

e = 2.71828182...dir. (e sabit sayısının kullanıldığı yerler ayrıca anlatılacaktır)

(Sonsuz):

¥, sadece matematikçilerin değil, düşünen herkesin ilgisini ve merakını çekmiştir. ¥'u sayı olarak düşünürsek; aklımızı zorlayıp "en büyük sayı"ya ulaştığımızı kabul edelim. O sayının mutlaka 1 fazlası olacağından yeni sayılar elde ederiz.

Meselâ sayı doğrusunda 0 ile 1 arasında sonsuz adet reel sayı vardır. 0 ile 10 arasında da sonsuz adet sayı olduğuna göre bu iki sonsuz da birbirine eşit olamaz. Bu yüzden matematikte "¥/¥" ifadesi tanımsızdır. Aynı şekilde 1¥ ifadesi de henüz tanımlanamamıştır. Hâlbuki 1'in tüm üsleri 1' eşit olmalıdır.

Kâinatta kaç adet "atom" olduğu sorulsa kaç derdiniz? Herhalde aklınıza gelebilecek en büyük sayıyı söylersiniz. Sizce 1073 nasıl bir sayı? Büyük bir ihtimalle sizin tahmininizden küçük. Ama tüm kâinattaki gezegenlerin, yıldızların, asteroidlerin ... atom sayısı işte bu kadar. (Araştırmalar sonucundaki tahmini sayı).

Kâinatın sonu neresi? Herhalde kâinat da bir yerde bulunuyor. Ayrıca genişlediği (şişen bir balon gibi) ilmî bir gerçek. Nerede, neyin içinde, nereleri kaplayarak genişliyor? Bundan sonrası ancak tahmin edilebilir. Şimdilik bunlar sır.

Şimdi ¥'un ne kadar büyük olduğu daha iyi anlaşılıyor (veya anlaşılamıyor) değil mi?

İlginç Sayılar(6):

(0 x 9) + 8 = 8
(9 x 9) + 7 = 88
(98 x 9) + 6 = 888
(987 x 9) + 5 = 8888
(9876 x 9) + 4 = 88888
(98765 x 9) + 3 = 888888
(987654 x 9) + 2 = 8888888
(9876543 x 9) + 1 = 88888888
(98765432 x 9) + 0 = 888888888
(987654321 x 9) - 1 = 8888888888




Cheyenne isimli Üye şimdilik offline konumundadır   Alıntı
Yeni Konu Aç Cevap Yaz

Etiketler
gizemi, matematiğin


Konuyu Toplam 1 Üye okuyor. (0 Kayıtlı üye ve 1 Misafir)
 
Seçenekler
Stil

Yetkileriniz
Konu Acma Yetkiniz Yok
Cevap Yazma Yetkiniz Yok
Eklenti Yükleme Yetkiniz Yok
Mesajınızı Değiştirme Yetkiniz Yok

BB code is Açık
Smileler Açık
[IMG] Kodları Açık
HTML-Kodu Kapalı
Trackbacks are Açık
Pingbacks are Açık
Refbacks are Açık


Forum Renkli Sosyal Medya
Forumrenkli Facebook Forumrenkli Twitter Forumrenkli RSS
Forum Renkli Desteklediklerimiz

Forum Renkli Yasal Uyarı!

Forum Renkli Türkiye'nin en renkli eğlence ve bilgi paylaşım platformudur. Hukuka, yasalara, telif ve kişilik haklarına bağlıdır. "5651 sayılı yasada" belirtilen "Yer Sağlayıcı" olarak hizmet sunmaktadır. İlgili yasaya göre site yönetiminin tüm içerikleri kontrol etme yükümlülüğü yoktur. Bu sebep ile sitemiz, uyarıları dikkate alarak yasa dışı paylaşımlar hakkında gerekli işlemleri yapmaktadır. Oluşabilecek yasal sorumluluklar "Üyelerimize" aittir.

Forum Renkli; Arkadaşlık, Dostluk, Eğlence, Paylaşım, Msn Nickleri, Msn Sözleri, Msn Avatarları, Ödüllü Yarışmalar, Msn Sözleri, Şiirler, Şarkılar, Moda, Sağlık, Tv, Dizi, Film, Komik, Komik Resimler, Komik Videolar, Haberler, Spor Haberleri ve Güncel Bilgi Paylaşımı gibi konuların kullanıcıları tarafından önceden onay almadan anında yayınlayabildikleri bir forumdur.

Copyright© 2011 - 2013, ForumRenkli.com® Tüm Hakları Saklıdır.


Forum Renkli Alexa Forum Renkli Sitemap



vBulletin® Version 3.8.7 ile güçlendirilmiştir.
Copyright ©2000 - 2017, Jelsoft Enterprises Ltd
Inactive Reminders By Realdizayn

Search Engine Optimization by vBSEO 3.6.1 ©2011, Crawlability, Inc.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557